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This paper deals with initial-value problems for the Burgers equation with the 
inclusion of a hereditary integral known as the fractional derivative of order 4. 
Emphasis is placed on the difference between the local and global dissipation due to 
the second-order and the half-order derivatives, respectively. Exploiting the 
smallness of the coefficient of the second-order derivative, an asymptotic analysis is 
first developed. When a discontinuity appears, the matched-asymptotic expansion 
method is employed to derive a uniformly valid solution. If the coefficient of the half- 
order derivative is also small, as is usually the case, the evolution comprises three 
stages, namely a lossless near field, an intermediate Burgers region, and a hereditary 
far field. In view of these results, the equation is then solved numerically, under 
various initial conditions, by finite-difference and spectral methods. It is revealed 
that the effect of the fractional derivative accumulates slowly to give rise to a 
significant dissipation and distortion of the waveform globally, which is to be 
contrasted with the effect of the second-order derivative, significant only locally, in 
a thin ‘shock layer’. 

1. Introduction 
This paper deals with 

inclusion of a hereditary 
initial-value problems for the Burgers equation with the 
integral known as the fractional derivative of order i: 

subject to the initial condition 

where the half-order derivative is defined by 

Equation (1.1) describes the physical processes of unidirectional propagation of 
weakly nonlinear acoustic waves through a gas-filled pipe. The fractional derivative 
results from the cumulative (memory) effect of the wall friction through the 
boundary layer (Chester 1964; Keller 1981, Sugimoto 1989). (Generally speaking, a 
boundary layer will give rise to memory effects in the form of this fractional 
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derivative. The same form can be found in other systems such as shallow-water 
waves (Kakutani & Matsuuchi 1975) and waves in bubbly liquids (Miksis & Ting 
1990).) The remaining terms have the same physical meanings as in the usual Burgers 
equation except for the definition of the independent variables. Here X and 0 denote, 
respectively, the spatial coordinate and the retarded time measured in a frame 
moving with the sound speed, so that (1.1) describes the spatial evolution of a fluid 
velocity f ,  appropriately normalized. Although, therefore, the condition (1.2) 
prescribes physically a boundary value, it is simply referred to here as the ‘initial’ 
condition. 

In  ( i . i ) ,  a denotes the well-known nonlinear coefficient i ( y+  l), y being the ratio 
of specific heats. The dissipation constant p due to the diffusivity of sound is far 
smaller than the other constant S due to  the wall friction (0 < B 4 S 5 1). In  fact, p/S 
is of order R-iD/L, where R (4 1) denotes the acoustic Reynolds number and D and 
L denote, respectively, the diameter of the pipe and a characteristic wavelength (for 
the details, see Sugimoto 1989). Since L is usually greater than D, the second-order 
derivative may be ignored in the first approximation. The steady-progressive-wave 
solution and the solutions to this equation for some typical initial-value problems 
show that the propagation of a discontinuity plays an essential role (Sugimoto 1989, 
1990). Although this local property is to  be compared with that of a hyperbolic wave 
equation, the fractional derivative exhibits a slow relaxation characteristic of the 
hereditary integral, giving rise to a significant dissipation and distortion of waveform 
globally. 

When the discontinuity appears, however, its local characteristic wavelength 
vanishes, so that Pfse no longer remains small. Just  as in the Burgers equation, the 
second-order derivative then comes into play to replace the discontinuity by a thin 
‘ shock layer ’. In  the ‘ outer region ’ surrounding this layer, however, its effect 
remains secondary, behind that of the hereditary one. Thus the two dissipations play 
different roles in the evolution. This difference is also well illustrated from the 
standpoint of the asymptotic analysis in terms of the small dissipation parameters. 

In  what follows, we first develop the asymptotic analysis in terms of p. When the 
discontinuity appears, a matched-asymptotic expansion method is employed to 
derive a uniformly valid expansion. The asymptotic analysis enables us to preview 
the evolution behaviour before embarking on solving the equation numerically. For 
numerical calculations, two different methods are used, depending on t8he type of 
initial condition. The finite-difference method is applied to localized conditions for 
which the hereditary integral converges (see, for example, Mitchell & Griffiths 1980). 
To periodic conditions, however, for which the integral should be defined in the 
sense of generalized functions, the spectral (Galerkin) method is applied (Gazdag 
1973; Basdevant et al. 1988; Sachdev 1987). It is shown that the hereditary effect 
significantly modifies the solutions of the Burgers equation, especially in the far field. 

2. Asymptotic analysis 
I n  this section, we consider the evolution off from the standpoint of asymptotic 

analysis in terms of the small parameter p. I n  this context, the other parameter S 
need not be small. The nonlinear coefficient a is set equal to unity in the following 
by rescaling f .  
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FIGURE 1. Evolution from the positive Gaussian-shaped pulse : F(0)  = exp ( -  ee) ; the solid lines 
represent the evolution off, by (2.2) with 6 = 1, i.e. f by (1.1) with /3 = 0 and 6 = 1 up to X = 3 by 
steps in X of 0.2, while the broken lines represent that by (1.1) with /3 = 0.01 and 6 = 1. 

2.1. Regular expansion 
It is na,tural, first, to seek a solution to (1.1) in the form of a naive expansion in 
powers of p:  

The lowest-order problem is to solve 

f = f o  + Pfl+ W2). (2.1) 

The initial condition is taken as 

If the solution fo is available, fl is then determined by 

under the initial condition f , (e,X = 0) = 0. Proceeding in this way, equations 
governing higher-order terms in (2.1) can be derived systematically. 

To solve (2.2) by analogy with the hyperbolic equation (6 = 0) ,  it  can be expressed 
in the ' characteristic form ' : 

along the ' characteristics ' defined by 

de 
dx - = - fo. 

But this representation is formal in the sense that (2.5) is not reducible to an ordinary 
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differential equation to  be satisfied along the characteristics. Nevertheless this form 
has merit for integrating (2.5) numerically along (2.6). 

Sugimoto (1990)  demonstrated numerically four typical evolutions of (2.2) from 
the positive and negative steps F ( 8 )  = f h ( B ) ,  h(8) being the unit step function, and 
the positive and negative Gaussian-shaped pulses F(B) = +exp ( -  8'). For a large 
value of 6, comparable with unity or greater, the dissipative effect involved in the 
half-order derivative suppresses the nonlinear steepening, so that a smooth initial 
condition evolves smoothly without forming a discontinuity. For the Gaussian- 
shaped pulses, the evolutions for 6 = 1 are typical examples. Figures 1 and 2 show 
their evolution, in which the solid lines represent the solutions to (2.2), while the 
broken lines represent, for reference, those to the full equation (1.1) with /3 = lo-'. 
It is seen that (1.1) is well approximated by (2.2). In figure 2, in particular, the two 
lines almost coincide. While fo remains smooth, there would be no difficulty in solving 
for the higher-order terms. As 6 becomes small, however, it is usually the case that 
the nonlinear steepening cannot be balanced by the fractional derivative, so that fo 
becomes multi-valued in the course of evolution. When this multi-valuedness 
emerges, a discontinuity must be fitted into the solution to make fo single-valued. In  
the case, incidentally, when the initial condition itself contains a discontinuity, it 
may of course be propagated from the outset. 

When the discontinuity appears, it has been mentioned that the second-order term 
pfss no longer remains of order /3. The regular expansion then breaks down around 
the discontinuity. But it still remains valid in a region away from it. In  order to  
render the expansion uniformly valid, the discontinuity should be replaced by a thin 
but smooth shock layer. With the whole region split into this shock layer and the 
remaining outer region, the matched-asymptotic expansion method is employed to 
connect both regions. This procedure will be explained in the next section. 

2.2. Matched-asymptotic expansion 
2.2.1. Outer expansion 

Upon assuming that a discontinuity already exists in the outer solution of (2.2), 
we first examine relations for the discontinuity to  satisfy. Let the discontinuity be 
located at  I9 = r ( X )  and let 7,1 be defined by O-r(X)  so as to take the origin of 7 a t  the 
discontinuity. Because r may involve /I, it  is assumed to be expanded in terms of p:  

7 = r o ( X )  +/3r1(X) + 0(p2).  (2.7) 

Rewriting (1 .1)  in terms of 7 and X and using the expansions (2.1) and (2.7), the 
lowest-order problem in powers of /3 becomes 

where i, = dr,/dX and the dot implies differentiation with respect to X hereafter. 
Here fo stands for f,,(r, X), since the argument I9 in (2.1) has been changed to 7. On the 
left side of the discontinuity, i.e. 7,1 < 0, let a continuous solution f, = B(7, X) prevail. 
Then fo is assumed to be expressed, with a local behaviour around and including the 
discontinuity, as 

f o  = B ( p , X )  + [v,+ q?#+ v,lqI+ ... + V,'nl"''+ ...I h(7), (2.9) 

where h(7) is the unit step function and - < 7 < 1 ; V, = V,(X) ( n  = 0 ,1 ,2 ,  . . .) and 
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FIGURE 2. Evolution from the negative Gaussian-shaped pulse : P(0)  = -exp ( -  Oz) ; the solid lines 
represent the evolution offo by (2.2) with 6 = 1 ,  i .e.fby (1 .1 )  with /3 = 0 and S = 1 up toX = 3 by 
steps in X of 0.2, while the broken lines represent that by ( 1  . l )  with p = 0.01 and 6 = 1 .  

V,( + 0) gives the strength of the discontinuity. Here the half powers of 171 are 
assumed to be present in view of the formula of fractional derivatives : 

(2.10) 

where p = in (n  = 0,1,2, .  ..) and T ( p )  denotes the Gamma function. Suppose that 
B ( 7 , X )  can be expanded appropriately around 7 = 0 so that it is continued beyond. 
7 = 0 :  

B(7,X) =B0+B,7+ ...+ B,,yn+ ..., (2.11) 

where B,, = B,,(X) (n = 0 ,1 ,2 ,  . ..) and B, gives the limiting value off approaching 
the discontinuity from the left. 

Let us now introduce (2.9) into (2.8). Of course, B satisfies (2.8) in 7 < 0. For the 
quadratic term info, (2.11) is used and h ( ~ ) ,  is set equal to h(7). Also, use is made of 
the relations 

~ , ~ ~ l q l ~ ’ ~ h ( y )  = I ~ , ~ l ~ + ~ ’ ~ h ( q )  (m, n:  non-negative integers), 

(dld7) h(7) = &?), (d/dv) Irlln’2h(7) = (H 171n’2-1h(7) (7 * O ) ,  

where 6(7) denotes the delta function. The fractional derivative of B is assumed to 
be expanded around 7 = 0 as 

(2.12) 

where the fractional derivatives of higher order, an+iB,/aqn+; (n = 1,2 ,3 ,  . . .), are 
defined by differentiating (1.3) with respect to 7 (Sugimoto 1989). For the 
discontinuous parts in (2.9), the formula (2.10) is used. After such preparations, we 
substitute (2.9) into (2.8) to have immediately from the coefficients of S(7) 

21 

(2.13) 

FLM 225 
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Using (2.12) and (2.13), the coefficients B,, in (2.11) are determined, by expanding 
(2.8) for f, = B around q = 0, as follows : 

On the other hand, the V, (n = 1 ,2 ,3 ,  ...) are determined from the coefficients of 
lqln'2-1h(q) (n = 1,2,3,  . . .) as follows : 

v, = 46 7 ,  V - - [~+2S"1-~) ] -2B2 ,  2 
7c2 - v, 

(2.15) I 
+6nt(n+ V -&@, V,-, + B, Vn-r+. . . + B ,  V,) (TZ = 3,4,5, .  . .), 1 J n-1 mn) 

where the B, vanish for odd n. Thus we have, albeit formally, determined the 
relations for the discontinuity to satisfy. 

Relation (2.13) determines the propagation velocity of the discontinuity, which is 
simply the one derived from the hyperbolic equation (6 = 0). In  line with the general 
property that the highest derivative involved in an equation usually determines the 
qualitative behaviour of its solution, the order of the fractional derivative is indeed 
lower than the highest one in (2.2), i.e. the first order. Effects of the fractional 
derivative first appear in V,. Interestingly, however, V, is an absolute constant 
independent of V,. Because of the term Klqli in (2.9), the discontinuity appears to be 
rounded rightward, but sharp-edged leftward. In  the numerical calculations by 
Sugimoto (1990), (2.9) and (2.11) are taken up to O ( q ) ,  and (2.2) is solved rather than 
(2.8) because 7,, B, and V, must be sought as part of the solution. 

As regards the expansion (2.9), we note the non-uniformity as V, vanishes. For 
(2.9) to be valid, it is required that Vn+J~1;/Vn - o(1) (n = 0 ,1 ,2 ,  ...) as q tends to 
zero. If V, tends to vanish, the region of validity for the 7 variable becomes narrower, 
i.e. 0 < q < c, provided the derivatives of V,, with respect to  X remain finite there. 
This non-uniformity implies that some other type of expansion than (2.9) must be 
prepared. This will be shown in 52.3. In this connection, we remark that (2.9) also 
exhibits another type of non-uniformity when the derivatives of V, with respect to 
X diverge. We explain this situation by the specific example of the evolution from the 
positive step F ( 0 )  = h(8) .  Since V, is an absolute constant, then obviously, (2.9) with 
B = 0 cannot represent the initial step a t  X = 0, even if V, were chosen to be unity. 
The asymptotic analysis in the Appendix shows that the magnitude V of the 
discontinuity at the wavefront is given by V = 1 -6(8X/n)i+ O ( X )  as X +  0, so that 
dV/dX diverges in this limit. (Here V should be distinguished from V, in (2.9). As far 
as the expansion (2.9) is legitimate, V is equal to  5, of course.) If V, were taken to 
be V ,  V, in (2.15) would make (2.9) non-uniform. In fact, (A 1) with (A 4) and (A 5)  
in the Appendix suggests an expansion different from (2.9). 
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Let us now return to  seek the higher-order terms in the expansion (2.1). Equation 
(2.4) then becomes 

(2.16) 

Since fo is subjected to a discontinuity, so also will be the case with fl. In view of (2.9), 
fl is assumed to be similarly expressed as the sum of a continuous solution b ( r , X )  to 
(2.16) in 9 < 0 and of discontinuous parts: 

fl = b(~,X)+[w~~l~l- '+w~llql-~+w,+ ...I h(q) ,  (2.17) 

where v, = v,(X) (n = -2, - 1,O). Here we assume that b ( r ,  X) can be expanded 
around 

h = b , + b , ~ +  ..., (2.18) 

= 0 so that it can be continued beyond it as 

where b,, = b,,(X) (n = 0, l ) .  In passing, substitution of (2.18) into (2.16) yields 

(2.19) 

In (2.17), the singular terms ~-~lq l - 'h(v)  and w-,lpl-h(q) must be incorporated to 
balance the singularity due to the second-order derivative of fo in (2.16). Here we 
recall the following important relation which provides an alternative definition of the 
delta function (Gel'fand & Shilov 1964, p. 57): 

(2.20) 

By virtue of this, we have, on substituting (2.17) into (2.16), from the coefficients of 
da(q)/dq, Irl-%(q) and 6(r), respectively : 

and i, 

(2.21 a ,  b )  

(2.21c) 

Because r(0) is infinite, wP2 is substantially zero. But when combined with (7I-l in 
(2.17), it  comes into effect to yield the delta function. The fractional derivatives of 
these singular (generalized) functions are also defined by (2.10) with p = - 1 and -t  
(Gel'fand & Shilov 1964, pp. 115-122). These asymptotic relations are used in 
determining the full solutionf, of (2.4) to obtain b, and v,. 

Here i t  should be remarked that (2.21c), which is the differential equation to 
determine the 'shock displacement due to diffusivity ' T ~ ,  is derived without recourse 
to matched asymptotic expansions. For the specific example of the Burgers equation 
considered by Crighton & Scott (1979, section 3), that expression corresponds to 
(3.15) in their paper. In fact, this can be verified if their example is recast in the 
present formulation by taking f = -8/X for -Xi < 8 < 0, and f = 0 for 8 < -Xi and 
0 < 8, so that V, = X-t, V, =-X-l, wo =-T~/X, B, = b, = 0 and 71 = - A  for 
q = 8+Xi-/3T1. Hence it is found that the present approach using generalized 
functions can provide information on the shock displacement due to diffusivity. 

21-2 
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2.2.2. Inner expansion 
We have seen from (2.17) that the regular expansion in the outer region brea.ks 

down as 7 tends to zero. To remedy this non-uniformity, a shock layer is introduced 
so that the second-order derivative may now balance the nonlinear term just as in 
the Burgers equation. To describe this balance properly, we introduce instead of 0 
(but with X unchanged) a new coordinate 6 defined by 6 = [ O - T ( X ) ] / / ~  = q/P.  In 
rewriting (1 .1)  in terms of c and X, the fractional derivative consists of two 
contributions, one from the rapid variation in the shock layer and the other from the 
slow variation in the outer region. Thus it is then expressed as 

where T - A ( O  < /3 < A < 1 )  signifies a point in the so-called matching region located 
between the shock layer and the outer region. If we let the order of A be p, then this 
satisfies ,u//?--t co asymptotically as P + O .  

With (2.22), ( 1 . 1 )  is now expressed as 

(2.23) 

wheref[=f(c,X)] denotes f in the shock layer. 
According to the principle of matched asymptotic expansions, f should be 

determined so that it may be continued smoothly as c+&co into the outer 
expansion as 7 + + 0  through the matching region. The outer expansion to be 
matched is derived by expanding (2.9) and (2.17) around 7 = 0 and replacing 7 with 
Pc. It then follows that the outer expansion as c+- 00 becomes, up to O(p) : 

Em = B, +P(b, +B, 6) + . . .) ’ (2.24) 

while as c-. co it becomes 

f a  = B, + v, +@( v, @+ w-, c-i) + P [ b ,  + ?lo + (B2 + v,) 0 + . . . . (2.25) 

But because the matching sliould be executed over the intermediate matching 
region, the rigorous conditions require that 

lim~[fi,ce,x;P,-f(c,x;P)l = 0, (2.26) 

where 6 is replaced by (p /P)  x with x ( - O( 1 ) )  fixed (see e.g. Cole 1968). Here the 
right- and the left-hand matching regions correspond to x >  0 and x c 0, 
respectively. 

8-0 P 

We now seek f in  the expanded form in powers of 4: 
f = & + & + P , +  ... . (2.27) 

The lowest-order problem yields 

(2.28) 
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Imposing the matching conditions, it is found that i, must satisfy (2.13), so that 
is given by the well-known Taylor shock profile : 

where 2 = ' V [ c - [ , ( X ) ] .  
14 0 

&, =@Bo+Vo+T.',tanh2), (2.29) 

The O(p)-problem for L is given by 

1 -+(()V,tanhZ)J aL = 6 (:):r - , L(1+tanh2')dZ', ac -m (2-2 )z 
(2.30) 

where (2.29) and the matching condition as c+- 00 have been used. The solution is 
easily obtained, by the standard procedure of variation of constants, as 

f l  = 6C sech2 2, 
1 

with (l+tanhZ')dZ'+D, (2.31) 

where D is an arbitrary function of X. 
Let us examine its asymptotic behaviour as fl+ 00. (The asymptotic behaviour of 
as c+- 00 is given b y L  - 6(2c);[exp [a&([-cO)].) To evaluate the integral in C, 

1 + tanh Z' is split into a sum of 2h(Z') and 1 -2h(Z') + tanh 2'. It is found that the 
leading asymptotic behaviour results solely from 2h(Z'), to  give 

(2.32) 

Incidentally, the contribution to C from the remaining term 1 - 2h(Z') + tanh Z' is 
found to be small, of O(c-'). In  the light of the matching condition as [+ 00, the 
leading term already corresponds exactly to the one in (2.25) (see (2.15) for V,). The 
next term, proportional to [--", seems to be unnecessary to  match because it decays 
as g+oo. But the matching condition (2.26) requires that this term should be 
matched, so that c0 must be chosen to be 2/&. This is the shock displacement in the 
presence of the hereditary effect. But since the location of the discontinuity 7 ( X )  
itself is also subject to the shift / ~ T ~ ( X )  from T ~ ,  both and /371 contribute to the total 
shock displacement due to diffusivity. 

Proceeding to the O(p) problem, & is governed by 

This solution is sought by the same method as for&, though it is straightforward but 
tedious, and found as 

A = -E (Bz -2) (22  tanh 2- 1 + Z2 sech2 2) +- 2 - 5, - i, 2 4% * 

vz, 

+E(tanh2+Zsech22) +Gsech22, (2.34) 
where B, is given in (2.14) and E and G are as yet unknown functions of X ;  for the 
definition of the fractional derivative of order -+, see (2.38) below. Taking the limit 
as 5- - co , A is asymptotically given by 

A = B ,  -2 +- B -- - [ o - i l - E ,  (; ;( 9) * 
(2.35) 
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In  the other limit as [+ CO, A is given by 

1-- . 4)  
Here V, is given in (2.15) and the integral in (2.34) has been evaluated as 

”( T!i 4) - ( s e c h 2 2 ) r  4 ( 
cosh2Z’dz’ = 16- 1--  ( Z - l ) + .  v, - W  

where (2.32) and the following asymptotic expression are used 

(2.36) 

(2.37) 

(2.38) 

In  (2.35) and (2.36), it is immediately found that both the coefficients of 
[ (42/V0 = [-[,) agree automatically with those of [ in (2.24) and (2.25). The 
remaining matching conditions for the constant term in [ yield two conditions for 
i, and E :  

and 

(2.39) 

i, = -b , -$ ,  -[, - (B, + t K )  [, + 

E = ~ , + $ V , & + 8 -  1-- % ”(  4)  
(2.40) 

where the final expressions for i, and E are derived for 6, = 2/&. It is found that 
(2.39) agrees with ( 2 . 2 1 ~ ) .  For the Burgers equation, if i, satisfies (2.21c), f is found 
from the first relation in (2.39) to have an arbitrariness proportional to Vi1. But there 
arises no need to  take account of it in addition to  7,. The remaining D and G in (2.31) 
and (2.34), which are the coefficients of the homogeneous solutions to (2.30), have not 
yet been determined by the matching. Both D and G will contribute to the higher- 
order shock displacement a t  order @ and b2, respectively, because those terms can 
be incorporated in (2.27) into a modified argument of t a n h 2  in A. Hence we have 
matched the shock-layer solutions with the outer expansion up to order p inclusive. 

2.3. The evolution of the discontinuity 
The discussions in the preceding sections are based on the a priori assumption that 
the discontinuity already exists, though smoothed through the shock layer. In this 
section, we examine how the discontinuity emerges in the course of evolution, and 
then how it eventually decays. Furthermore we preview the overall evolution from 
the standpoint of the asymptotic analysis. 

In solving (2.2), there exists a ‘shock-formation point’, 0 = 8, and X = X,, a t  
which the waveform begins to be multi-valued. For the Burgers equation, Crighton 
& Scott (1979) introduced the idea of an ‘embryo-shock region’ around the shock 
formation point, through which the local dissipation and nonlinearity balance 
transiently to form eventually a fully developed Taylor shock profile. Following their 



Burgers equation with a fractional derivative 64 1 

idea, we examine a similar embryo-shock region for the present problem. Whenf, in 
(2.2) does not vanish at  the shock formation point, we magnify 0 andX around 6, and 
X, by (0- 0,)//3 = co and (X-X , ) /p  = r. In  terms of 5, and r, (1.1) is reduced to the 
Burgers equation at  leading order : 

(2.41) 

In the case when fo(co, X,) vanishes, we adopt different scalings, (c-co)/@ = c,, and 
(X-X,)/@ = cr, so that -f/@ obeys (2.41) at the leading order. In either event, it is 
found that the hereditary effect is of higher order. Thus we must solve this transient 
Burgers equation first by taking the regular expansion just before the shock 
formation point as an initial condition so that its solution may be matched with the 
fully developed shock wave. For the details, see Crighton & Scott (1979). 

Next we examine the opposite case in which the discontinuity info vanishes at  a 
finite value of X. Then how will the discontinuity evolve after that 1 For simplicity, 
we examine a case in which B(r],X) vanishes identically. It has already been 
remarked that (2.9) exhibits a non-uniformity as V, vanishes. Consider a point 
8 = 8, and X = X, at  which V, may be regarded as infinitesimally small. The further 
evolution around the wavefront can be examined by linearizing (2.2) locally as 

(2.42) 

The ' initial ' condition at  X = X, is then taken locally around the wavefront as 

fo(e,x = x,) = v,h(e-e,), (2.43) 

where V, is infinitesimally small. To solve (2.42) subject to (2.43), we make use of the 
Fourier transform method. Then fo is easily obtained as 

(2.44) 

(0-8, < o), 
where Y = 6(X-X1)/[4(8-8,)]~. It is found from this that any derivatives of f o  (of 
integral order) with respect to B vanish at 0 = 8,, because the first-order derivative 
is given by 

(2.45) 

This suggests that as soon as V, vanishes at X = X, +0, any discontinuity at 0 = 8, 
disappears instantaneously for X > X,, and the region 0 < 0, ahead of the signal 
remains undisturbed. This is the origin of the non-uniformity of (2.9) as V, +. 0. Since 
8 denotes physically the retarded time in a frame moving with the linear sound 
speed, the wavefront cannot be propagated faster than the sound speed so that the 
wave tends to relax only in the region behind. The further evolution is well described 
by (2.2), if no other discontinuity exists. In view of (2.45), incidentally, the 
linearization around the wavefront is justified because the ratio I ( f o  afo/ae)/(afo/aX)l 
vanishes as Ifo(X-X,)/(e-e,)l when 0 tends to 8,. 

So far, we have not imposed any restriction on the magnitude of 6. But it is usually 
the case that S is relatively smaller than unity, though 6 % p (Sugimoto 1990). In that 
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case, we can anticipate the following scenario for the evolution. I n  the near field 
X 5 O ( l ) ,  ( 1 . 1 )  is governed mainly by the lossless nonlinear hyperbolic wave 
equation on the left-hand side, and its solution is generally subject to nonlinear 
steepening. As it becomes steep enough, the second-order derivative now comes into 
play quickly, though only very locally. I ts  effect begins with the embryo-shock 
region, and leads eventually to  the Taylor shock profile. This process is well described 
by the Burgers equation. In  the outer region of the shock layer, the lossless solution 
remains valid. As X 9 1,  f is approximated by f = - [ e - O , ( X ) ] / X ,  where 
8,(X) (IdO,/dXI 4 IS-S,l/X) is a function of X .  Hence the global profile off evolves 
into a series of triangular pulses, in general, if the small effect of 6 is ignored. 

But X becomes large in the far field, comparable with &', and so the hereditary 
effect now comes into play. For the slow and long scales Band X defined by S28 and 
6'X, respectively, f is governed by 

af af a? 
-- f - = - -+ o(p6')). ax ae a@ (2.46) 

A transition from the Burgers region to this hereditary far field should be determined 
by the matching principle as X+ co but x+O. 

In  the far field, it often happens that f decays. Then the nonlinear term in (2.46) 
becomes so small that the evolution is well described by the linearized equation. This 
equation is simply the counterpart of the heat equation factorized?: 

( a  __- a+) (  -+- a a+)  f = ----= ay af 0. 
ax a$ ax a@ ax' ae (2.47) 

Of course, however, there exists a case in which the nonlinearity survives, as in the 
evolution from the positive step. In this case, we have immediately an embryo-shock 
region around X = 6' = 0, through which the Taylor shock profile is formed for 
X 9 p. But its magnitude is still preserved at order unity in the far field X - O(S-'), 
while its profile is now regarded asymptotically as the step function in the far-field 
variable e. Further evolution in the far-field variables e and X is simply that of the 
positive step demonstrated by Sugimoto (1990). 

3. Numerical analysis 
3.1. Finite-difference method 

In  the light of the results of the asymptotic analysis, let us now solve ( 1 . 1 )  
numerically subject to  (1.2) to confirm the evolution scenario. For numerical 
calculations, it is interesting, and also usually the case, to take 6 small compared with 
unity (p 4 6 4 l ) ,  so that a shock will emerge. In this section, we employ the finite- 
difference method (see, for example, Mitchell & Griffiths 1980) to solve the evolution 
from localized initial conditions. 

In  the lossless and Burgers regions, we use the implicit finite-difference method due 
to Lee-Bapty & Crighton (1987). For a 3 x 3 grid in (8,X)-space, the derivative with 
respect to X is approximated by the central difference, while the derivatives with 

t It is interesting to compare this factorization with those for the second-order hyperbolic wave 
equation a2u/at2-a2u/ax2 = (a/at +a/ax) (aulat -au/ax) = 0 and for the elliptic Laplace equation 
a2u/ax2 + CI2u/ay2 = (a/ax + i spy) (aulaz - i aulay) = 0 which suggest the introduction of the 
characteristic variables p = r--t and @ = r + t ,  and the complex-conjugate pairs z = x+iy and 
z = x -  iy, respectively. 
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respect to 8 are evaluated not simply by the central ones but by averaging over the 
three X-rows. But f in the nonlinear term and the half-order derivative are 
evaluated only at  the central point of the 3 x 3 grid. 

In evaluating the half-order derivative, the simple Simpson's rule and its 
modification are used. The integral (1.3) is divided into two parts : 

where A8 (0 < A8 Q 1) is taken small enough. Because of the weak singularity of the 
kernel function (8-8')-: a t  8'= 8, the first integral on the right-hand side is 
evaluated by the usual Simpson's rule. The second integral is evaluated by 
approximating f by a quadratic function around 8' = 8, so that 

where the dependence on X is suppressed. Because the infinite lower limit in (3.1) 
must be replaced by some finite value 8 = - L < 0, it happens that the above recipe 
cannot be applied when 8+L is an odd multiple of A0. Then the trapezoidal rule is 
used only for the end interval. In particular, at 8 = - L + A8 the integration is made 
by approximating f by a straight line. 

In the calculations, we set the upper bound of 8 a t  8 = M > 0, as well as the lower 
one at  8 = -L ,  to lie within a finite region. As will be seen later, the half-order 
derivative generates a long tail in the course of evolution which extends past the 
upper bound at 0 = M .  At this end point, therefore, the condition azf/i382 = 0 is 
imposed, which releases the tail out of the region. At the other end, 8 = -L ,  the 
condition a f /a8 = 0 is imposed, which, however, is not significant in the results. 
Rather, for the condition at  8 = M there may arise the question as to how to check 
the validity of the results by a conservation law. This problem will be considered in 

Up to the point where the Burgers region is attained, the implicit method is very 
stable and successful. But this method is very time-consuming and, even worse, leads 
to accumulation of errors in the far field. In order to pursue such a long-time 
behaviour, the explicit method is rather suitable. For a 3 x 2 grid in (8,X)-space, the 
derivative with respect to X is approximated by the forward difference, while the 
derivatives with respect to 8 are evaluated, as before, by the central differences but 
in the current X-row only. In evaluating the nonlinear term, f is now averaged over 
the current three grid points, but the half-order derivative is evaluated at  the central 
point only. The timing of the changeover from the implicit scheme to the explicit one 
is set when the Burgers region is attained. Incidentally, if 6 has such a large value as 
unity, shown in figures 1 and 2, the implicit scheme is unstable and the explicit one 
is advisable from the outset. 

§ 4. 

In the following, we consider four typical cases of the initial condition F(0)  : 

(I) F ( 8 )  = exp(-OZ), 1 

I (11) F ( 0 )  = -exp (-@), 

(11.11 F ( e )  = - (2e)t 8 exp ( - P) ,  
(3.3) 

(IV) F ( e )  = ( 2 e ) i ~ e x p ( - ~ ) ,  

where the maximum of F is normalized to unity. For the Burgers equation, the 
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FIQURE 3. Evolution from the initial condition (I) : F ( 0 )  = exp ( -@); the solid lines represent the 
evolution off by (1 .1 )  with /? = 0.01 and 6 = 0.1 up to X = 40 by steps in X of 5, while the broken 
lines represent that by the Burgers equation with B = 0.01 (and S = 0). 

evolution from condition (11) can be reproduced from (I) by transforming f to - f and 
B to -8. When the half-order derivative is present, however, condition (11) is no 
longer reducible. 

For each initial condition, figures 3-6 display the evolution with respect to  X, 
where the broken lines represent, for reference, the evolution of the Burgers equation 
(( 1.1) with the same value of p, but 6 = 0) under the same condition. To demonstrate 
the results of the asymptotic analysis, it is preferable to take p as small as possible 
with the inequality /3 + 6 preserved. I n  view of the time consumed, however, p and 
6 are chosen, respectively, to be and lo-'. The grid sizes A8 and AX are chosen 
to be A8 = 2.5 x and AX = lo-*, except for (IV) where the size of A8 is halved. 
The calculation region [ -L,M] is taken wide enough, as [ -8,481, [ -4,521, [ -8,481 
and [ -4,321 for (I) to (IV), respectively. I n  figures 3-6, however, the profiles are not 
displayed over the full ranges of the above calculation regions. 

As suggested by the asymptotic analysis, the hereditary effect does not manifest 
itself so remarkably up to X = 5 in figures 3 to 5, and up to  X = 2 in figure 6, as long 
as errors of O(6) are ignored. Incidentally, the changeover from the implicit scheme 
to the explicit one is made a t  X = 5 for all cases. I n  figure 3, the waveform at X = 5 
may well be regarded as a triangular pulse with discontinuity of about 0.5. This 
should be compared with the solution of (2.2) demonstrated by Sugimoto (1990). The 
discontinuity is now replaced by a sharp shock layer. As (2.9) suggests, the waveform 
at X = 10 shows the discontinuity followed by the square-root function, so that the 
wavefront appears to be rounded. At the final stage X = 40, it is seen that the 
discontinuity has disappeared. The wavefront appears to be smooth enough with 
respect to 8, as (2.45) predicts, and it is no longer propagated forward (leftward). 
Next, figure 4 shows the interesting case of the negative pulse. Owing to the 
hereditary effect, i t  is impossible for the negative discontinuity to be propagated 
with the equilibrium state f = 0 on the positive side of 8. Therefore even if it were 
applied initially (like the Burgers solution at X = 5 ) ,  it spreads instantaneously 
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FIGURE 4. Evolution from the initial condition (11) : F ( 0 )  = - exp ( -  0*) ; the solid lines represent 
the evolution off by (1.1) with B = 0.01 and S = 0.1 up to X = 40 by steps in X of 5, while the 
broken lines represent that by the Burgers equation with B = 0.01 (and S = 0). 

FIGURE 5. Evolution from the initial condition (111) : F(0)  = - (2e);Oexp ( -0*) ; the solid lines 
represent the evolutionf by (1.1) with /9 = 0.01 and 8 = 0.1 up to X = 40 by steps in X of 5, while 
the broken lines represent that by the Burgers equation with B = 0.01 (and S = 0). 

toward positive 8. Figure 5 is the combined case of figures 3 and 4. In the Burgers 
solutions, the positive pulse and the negative pulse behave antisymmetrically with 
respect to the origin. With the half-order derivative, interestingly, the effect of the 
positive pulse is carried over to strengthen the negative one slightly. The opposite- 
polarity case of this ‘merging’ is shown in figure 6. 
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FIGURE 6. Evolution from the initial condition (IV): F ( 0 )  = (2e):Bexp(-0*); the solid lines 
represent the evolution off by (1.1)  with p = 0.01 and S = 0.1 up to X = 8 by steps in X of 1 .  while 
the broken lines represent that by the Burgers equation with p = 0.01 (and 6 = 0). 

In  the far field, generally speaking, the hereditary effect decelerates the 
propagation, compared with the Burgers solutions, and gives rise to  pronounced 
overall dissipation and distortion of waveform (lengthened backward). The former 
phase lag is due partly to the linear dispersion involved in the half-order derivative. 
For the sinusoidal wavefcc exp [i(wO--KX)], the linear dispersion relation of (1 .1)  is 
given by - iK = -Pw2 - G(iw$ so that f becomes 

f c c  exp{-[pw2+S(~)1]~}exp{io[8--(2w)-tX]}, (3.4) 
where w (>  0) and K denote a frequency and a wavenumber. Thus the phase moves 
with speed S(2w)-4 toward the positive direction of 0. This explains why the locations 
of the positive peaks lag behind. Interestingly enough, though, the locations of the 
negative peaks in figures 4 and 5 coincide with those in the Burgers solutions. As for 
the profiles, on the other hand, the sharp shock layer disappears in the far field, while 
the waveform is lengthened behind to  form the tail. The appearance of the tail is a 
typical feature of the hereditary effect. Even if the profile is localized initially, it is 
globally distributed eventually. Hence i t  is found that the hereditary effect exhibits 
a sharp contrast to the diffusive effect. 

3.2, Spectral method 
Next we shall examine the periodic evolution in 0 from a sinusoidal initial condition 
by the spectral (Galerkin) method (see Gazdag 1973; Basdevant et al. 1986; Sachdev 
1987). Taking the 2n-period in [ -n, XI, f is discretized at N (even) points Oi = 2nj/N 
( j  = - l j ,  -$V+i, ...,$V- 1) by a finite Fourier series: 

k - - N / 2  
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where the compkX Spectra ck(x) (k = -I@+ 1, . . . , la- 1)  are inversely 
expressed by 

1 N / 2 - 1  

C,(X) = - f (dj, X) exp ( - ikOj). (3.6) 

Here C,  satisfy the conditions C-, = C,* where the asterisk denotes the complex 
conjugate. Then the derivatives off, including those of fractional order p ,  are simply 
calculated by 

N I --- N / 2  

where p takes the values of 1 , 2  and 4. For p = $, the formula is defined as the Fourier 
transform of the algebraic generalized function (Sugimoto 1989), although i t  is in fact 
simply the classically well-known Fresnel integral. 

For the product off with any function g whose spectra are given by D,, the Fourier 
coefficients E ,  of the product f g  are calculated by 

where D, are defined outside the original range of suffices (-A$ < k < la- 1)  by 

Following the procedure developed by Gazdag (1973) (see also Sachdev 1987), the 
evolution off from X by AX (4 1) is calculated by a Taylor expansion taken up to 
the third order in AX: 

D k k N  = D k .  

where the right-hand side is evaluated at  X, the dependence on 8 being suppressed. 
Here the derivatives with respect to X are evaluated by differentiating the original 
equation (1 .1)  : 

(3.10) I fx = f f e + P f e ~ - ~ f h  

f x x  =fxfe+ffxe+Pfxee-Sfxd,  

f x x x  = f x x f s + 2 f x f x e + f f x x e + P f x x e e -  Sfxxk, 

where the suffixes designate partial differentiation with respect to 6' and/or X ,  while 
f &  denotes the half-order derivative of 8 for simplicity. To evaluate (3.10) at  X, the 
derivatives of X on the right-hand sides are rewritten in terms of the derivatives of 
8 only by using the lower-order derivatives ofX. Introducing (3.10) thus expressed 
into (3.9) and using the relations (3.7) and (3.8), we derive the marching scheme with 
respect to X for each Fourier component. 

According to this scheme, we solve (1.1) under the initial condition F(8) = sin8, 
with p = by taking N = 256 and AX = 2 x lop3. The numerical 
results are shown in figure 7 together with the evolution under the Burgers equation. 
This sinusoidal case is seen to be qualitatively similar to figure 6 if such a pulse were 
applied repeatedly, with an appropriate period, from some large negative 8. But in 
the periodic case, the effect of the tail from the initial step-up disappears completely. 
In  this case, the phase moves, by (3.4), with the speed 6(2w)-t  toward the positive 
direction of 0, where w is unity initially. Because w-t is a relatively insensitive 
function of w ,  however, the speed is almost constant, even if the higher harmonics 

and 6 = 
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FIGURE 7 .  Evolution from the sinusoidal initial condition P(0)  = sin8; the solid lines represent the 
evolution off by ( 1 . 1 )  with /3 = 0.01 and S = 0.1 up to X = 12 by steps in X of 1, while the broken 
lines represent that by the Burgers equation with /3 = 0.01 (and 6 = 0). 

(w = 2,3,4,  . . .) are generated by the nonlinearity. This seems to be the reason why 
the points at  which f = 0 in figure 7 appear to lag a t  a constant rate in spite of the 
nonlinear distortion. In addition to the phase lag, the waveform tends to become a 
rounded N-wave ('8'-wave might be appropriate) and to form a hunchbacked shape. 
At  the final stage of evolution, the sharp shock layer disappears, and the further 
evolution will be described by the linearized version of (2.46). Quite recently, Gittler 
& Kluwick (1989) have applied the spectral (Galerkin) method to a similar equation 
(asymptotically equivalent) to (1.1). Although S is chosen relatively large, 6 - &, so 
that the calculation is limited to a short period of X, the initial behaviour of the 
present results appears to agree qualitatively with their results. 

4. Conservation law 
In this section, we mention the conservation law derived from ( l . l ) ,  which is used 

to check the numerical results by the finite-difference method. For localized 
conditions satisfying f + 0 and a f /a8 + 0 as B --f _+ co, integration of (1.1) over the 
whole range of 0 yields 

To evaluate the right-hand side, we use the following relations : 

(iw8)dB = lim (-2Sxiw)if(w,X), (4.2) 
W+O 

where fstands for the Fourier transform off, defined by 
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Iff is bounded as w + 0, i.e. 

& r T f ( t , X ) d t  = -d7 
at- 

649 

= 0, (4.5) 
t-O 

lim O+O I 1:" f exp (iwe) dB1 = I Jym f do1 < co, (4.4) 

then it is found that the right-hand side of (4.1) vanishes, so that the integral off over 
the whole region of 0 is conserved with respect to X. Incidentally, for periodic initial 
conditions as well, it is easy to show that the integral o f f  over one period is 
conserved. In fact, integration of (1.1) leads to 

where 8 is arbitrary and T is a period off, i.e. f ( B , T , X )  = f ( O , X ) .  
By the conservation law, we can check the accuracy of the numerical results 

obtained by the finite-difference method. As was shown, the waveform tends to have 
a slowly decreasing tail, which extends out of the calculation region as X increases. 
Thus it is evident that the conservation law does not hold without taking account of 
the tail extent. For the initial condition (11) as the worst case, it is found that the 
quantity to be conserved is reduced to 70% of its initial value at  the final stage of 
calculation if only the finite region -4 < 8 < 52 is considered. So there arises a need 
to complement this by taking account of the tail beyond the calculation region. 

To this end, asymptotic solutions are developed for the tails by solving (2.46) in 
the far field. According to the matching principle, the initial condition for this region 
at  X = 0 is taken from the asymptotic solution to the Burgers equation as X + co but 
I+ 0. Suppose this condition at X = 0 be f = W(@, where W(Q) depends also on an 
arbitrary matching constant. For localized initial conditions at X = 0, the asymptotic 
solutions to the Burgers equation decay rapidly enough to allow the linearization of 
(2.46). Then we can solve it easily by using the Fourier transform method, to get 

f ( w , X )  = W(w)exp[-(-iw)tXl, (4.6) 

where W ( w )  denotes the Fourier transform of W(g) (whose definition is given by 
(4.3)). Since we are concerned with the asymptotic behaviour as e-t 00 we expand 
@(w)  around w = 0. This expansion is possible from the assumption that W is 
localized in g. It then follows that 

f= [W(O)+1- .dW(o)(- io)+ ...I exp[-(-iw);~]. 
dw (4.7) 

Using the formula of the inverse transform 

x 
(2leP 

exp [ - (- iw)"] exp (-iw8) dw = (1 + sgn 8)--=-5exp 

we have from (4.7) 

Here note that (4.8) is the elementary solution of the linearized equation (2.46). In 
view of this, the first term in (4.9) corresponds to the 'monopole' solution and the 
second term to the 'dipole' solution. Since (27~)iW(O) represents the integral of W(g) ,  
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it is found that for W(0)  += 0, the tail extends farther than in the case with 
W(0)  = 0. For e 9 1,  the tail decays algebraically with respect to $, in contrast 
to the exponential decay in the Burgers equation. 

Now we apply the above result to the specific cases. As far as the asymptotic 
solution to the Burgers equation as X + co is concerned, the initial condition (I) is 
equivalent to the delta function F($) = I&(@) in the far-field variable (see (4.8) and 
(4.9) in Whitham 1974). It is then shown that the asymptotic form is given by a 
triangular shape in -1 < 8< 0 with 1 = S2(27&X)~ and the transition layers are too 
thin to be 'visible'. Thus W($) is taken as 

(4.10) 

for $ < - I  and o < $ ,  
where the coefficient of $comes from the conservation of the initial area a t  X = 0 and 
1 is regarded as a constant to  be specified by the matching. The Fourier transform of 
W($) is obtained as 

,. 4 2  62 [i - ( 1  +ilw) exp (-ilw)] S2 

4 2  
W(w)  = -- = -[1+~1(-iw)+O(w2)]. (4.11) 

12 u2 

Thus we have the asymptotic expression for the tail: 

); ( :;). a f = s  IS2 ( 1+%1--+ ... -exp -- (4.12) 

If only the leading term in (4.12) is taken, the asymptotic expression for the tail 
outside of the region is given, by using the value off = fM a t  0 = M ,  as 

(4.13) 

where @ = 6X/(46); and ~M = SX/(4M)f. Taking account of this contribution to the 
integral off in 0 2 M ,  i t  is found that the conservation law is surprisingly improved. 
If (4.12) is taken up to  the second-order term, the relative error always remains 
within the order of at worst. In this case, the unspecified quantity 1 is 
numerically determined as 

(4.14) 

wheref,, stands for the leading term in (4.12). For the initial condition (11) as well, 
the triangular initial condition (4.10) is reversed with respect to the origin. In this 
case, the asymptotic form (4.12) is unchanged and the conservation law is improved 
as much as in the case of (I). 

For the initial conditions (111) and (IV), the asymptotic solutions must be 
evaluated by the saddle-point method with /3X fixed. It is then found that W(@) is 
now replaced by the N-wave for (111) and the triangular 'S-wave' for (IV), 
respectively. But the resulting lowest asymptotic expression for the tail is common 
to the two cases and is given by 

(4.15) 
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It is found from this that the tail decays more quickly than (4.13). Taking account 
of (4.15), the corrected conservation law holds within absolute errors of order in 
both cases. 

5. Conclusion 
We have examined the evolution of (1 .1)  asymptotically and numerically subject 

to the initial condition (1.2). The difference in the dissipation due to the second-order 
derivative and the fractional one has been highlighted. Unlike the well-known role 
of the former derivative, the latter fails to check the nonlinear steepening, and allows 
the emergence of a discontinuity. In  this sense, the fractional derivative remains 
locally secondary in ( l . l ) ,  as if it were an ordinary derivative of lower order. But 
because the fractional derivative is given by the hereditary integral, its effect is 
accumulated slowly, to spread over the whole waveform. When a shock appears, its 
local profile looks rounded backward compared with that in the Burgers equation. 
This is the very hereditary effect (after-effect) of the abrupt change which tends to 
continue this change. The same effect also appears in a long tail, decreasing 
algebraically slowly in 8, behind a localized wave. It is interesting to find that the 
hereditary effect makes a wavefront very smooth (flat) because it tends to maintain 
the undisturbed state so far experienced. 

The hereditary effect can give rise to more significant dissipation than the second- 
order derivative in the outer region of the shock layer. This can be found from the 
linear dispersion relation (see (3.4)). The role of the dissipation is reversed between 
the high- and low-frequency limits. It is characteristic of the fractional derivative 
that the damping rate with respect to X is proportional to the square root of the 
frequency. It should also be noted that the fractional derivative can give rise to 
dispersion, which retards the propagation and contributes to production of a tail. 

Such hereditary effects have not yet been encountered in other wave systems 
described by differential equations, even if some relaxation mechanisms have been 
taken into account. They can be clarified after solving the integro-differential equation 
(1 .1) .  The solutions thus obtained can provide quantitative knowledge of the 
hereditary effect, especially in pursuing the far-field behaviour. 
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Department of Applied Mathematics and Theoretical Physics at University of 
Cambridge for his kind and warm hospitality during my stay at  his department in 
1989. I would also like to express my gratitude to the referees for valuable comments 
and criticisms which have led to the improvement of the original manuscript. All the 
computations were carried out on the NEC ACOS 2000 and SX2 of Osaka University 
and also on the IBM 3084 Phoenix of Cambridge University. 

Appendix. Non-uniformity of the expansion (2.9) 
We examine the non-uniformity resulting from the divergence of V, in (2.9) by 

taking as an example the evolution from the positive step F(8)  = h(8). Since this 
condition has no characteristic scale in 8, 6 can be normalized by rescaling 8 and X 
to S28 ( = g) and PX ( = X ) ,  respectively. Because the relation d.z/dX = -gV must be 
satisfied at the wavefront with V = 1 initially, this suggests f o  in the form 

f o  = h(g+lJ)+v($,X), (A 1) 
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where Ivl + 1. Introducing this into (2.2), the linearization yields 

and w = 0 (e+lJ < O),  (A 3) 
where we note that v may jump at a= -lJ. Since x + 1,  we seek the asymptotic 
solution to (A 2): 

v = v(1) + v(2) + . . . . 
where dn+l)/dn) - o(1) (n = 1,2, ...) as X - t O .  Because the leading balance in (A 2) 
occurs between the left-hand side and the first term on the right-hand side, we obtain 

(A 4) 

4 -  
xz 

v(’) = - 1 [(e+g)i- (e+x)t], 
2 a d2) = 6e+ O-- (sin 29, - %p cos 2q + 4q1) ( e + X )  -- tancp, 
R x 

where cp = tan-’ (1 +28/1)t and -+ < @/I. At the wavefront e = -@, we have 
w = - ( 8 x / x ) i + O ( X ) .  Thus the decay in the strength V ( x )  of the discontinuity a t  the 
wavefront is asymptotically given by 

V = 1 - ( ~ X / R ) ; +  O @ ) .  (A 6) 
Since d V / U  diverges as X + O ,  V, in (2.15) would make (2.9) non-uniform if (A 6) 
were used for V,. Here it is useful to note that v(l) is determined by the discontinuity 
alone, so that the leading decay in (A 6) is independent of the waveform behind the 
discontinuity. In other words, (A 6) is valid not only for the step function but also. 
for other conditions given by F($) = h(e) + (regular but vanishing function at B = 0) 
- for example, a triangular pulse. 
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